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Abstract-Thermally driven flow in a thin, inclined, rectangular cavity-filled with a fluid-saturated, 
porous layer-is studied analytically and numerically. A constant heat flux is applied for heating and 
cooling the two opposing walls of the layer while the other two walls are insulated. On the basis of the 
Darcy-Oberbeck-Boussinesq equations, the problem is solved analytically, in the limit of a thin layer, 
using asymptotic expansions and an integral form of the energy equation. Solutions for the flow fields, 
temperature distributions and Nusselt numbers are obtained explicitly in terms of the Rayleigh number 
and the angle of inclination of the cavity. A numerical study of the same phenomenon, obtained by solving 
the complete system of governing equations, is also conducted. A good agreement is found between the 

analytical predictions and the numerical simulation. 

1. INTRODUCTION 

OVER the past years considerable research efforts 
have been devoted to the study of heat transfer in 
cavities filled with a fluid-saturated, porous medium. 
To a large extent, this interest is stimulated by the 
fact that thermally driven flows in porous media are 
of considerable engineering interest. These problems 
arise in the design of pebble bed nuclear reactors, 
catalytic reactors, compact heat exchangers, solar 
power collectors, geothermal energy conversion, use 
of fibrous materials in the thermal insulation of 
buildings and geophysical flows. Another important 
area of application is heat transfer from the storage 
of agricultural products which generate heat as a 
result of metabolism. An excellent review of existing 
experimental and numerical results have been pre- 
sented by Combarnous and Bories [l] and Catton 

PI. 
The purpose of the present study is to examine the 

effects of natural convection in an inclined, rectangu- 
lar, porous layer when a constant heat flux is applied 
on two opposing walls, while the other two walls are 
maintained adiabatic. The layer is referred to as 
being horizontal, vertical or tilted, depending on the 
orientation of its thermally active walls with respect 
to the gravity acceleration vector. A review of the 
literature shows that most previous theoretical publi- 
cations deal with vertical [3-S] or horizontal [6,7] 
cases. For situations involving inclined layers, avail- 
able studies are relatively limited. The problem of a 
sloped porous layer, heated isothermally from below, 
has been considered theoretically and experimentally 
by Bories and Combarnous [8]. Depending on the 
values of the slope of the layer and the Rayleigh 
number, different shapes of free convection move- 
ments have been observed. Hence, a two-dimensional 
stable unicellular flow takes place in the layer if 

R < 47?/cos$, where 4 is the angle between the 
heated wall and the horizontal plane. On the other 
hand when the Rayleigh number is higher than this 
critical value a transition from unicellular flow to 
stable three-dimensional flow is observed. The result- 
ing convective movements take then the form of 
polyhedral cells for $J lower than about 15” while for 
higher values of 4 it consists of adjacent longitudinal 
coils climbing up along the direction of the slope. 
Finally for very high Rayleigh numbers it was found 
that, depending on the slope of the layer, a fluctuating 
regime or a wavy coils regime could be observed. 
Convection in a tilted, porous box-with two parallel 
isothermal planes and the other limits insulated-has 
been studied numerically by Vlasuk [9] for the range 
A = 1, -90” < 4 < 90” and R < 350. It was found 
that the tilt angle, for maximum heat transfer, is 
approximately 50”. Holst and Aziz [lo], considering 
temperature-dependent physical properties, investi- 
gated the heat transfer of a tilted square of porous 
material. Steady natural convection in a slightly 
inclined, rectangular, porous box has been studied by 
Walch and Dulieu [l l] using the Galerkin method. 
A correlation for the Nusselt number as a function 
of Rayleigh number, aspect ratio and tilt angle has 
been obtained by these authors. More recently, the 
existence of multiple solutions, in a slightly inclined, 
porous cavity heated from the bottom, has been 
studied numerically by Walch and Dulieu [ 111, Moya 
et al. [12] and analytically by Caltagirone and Bories 
[13] who determined their stability. It was demon- 
strated that, for small angles of inclination, three 
different real solutions may exist for a given Rayleigh 
number and aspect ratio. 

All the above studies have considered cavities 
with isothermal walls despite the fact that in many 
engineering applications the temperature of a wall is 
not uniform but, rather, is a result of the imposition 
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NOMENCLATURE 

A aspect ratio of the cavity, H’/L 
B coeffi&ent in equation (4.8) and 

equation (5.3) 
C temperature gradient along x direction 

g gravitational acceleration 
H thickness of the cavity 
k thermal conductivity of fluid-saturated, 

porous medium 
K permeability 
L length of the cavity 
Nu Nusselt number, equation (4.13) 

P’ pressure 

P dimensionless pressure, Cp’/(ap/k)] 

4’ constant heat flux 
R Rayleigh number, g/?KL’q’/kuv 
T temperature 

T;, reference temperature at x = y = 0 
AT wall-to-wall temperature difference at 

x = 0, equation (4.12) 
AT’ characteristic temperature difference, 

q’L’/k 
11) velocity in x’ direction 
V’ velocity in y’ direction 

U dimensionless velocity in x direction 
(#‘U/E) 

V dimensionless velocity in Y direction 
(v’L’/u) 

X’ coordinate axis along side walls (Fig. 1) 

Y’ coordinate axis along end walls (Fig. 1). 
X dimensionless coordinate axis (x’/L’) 

Y dimensionless coordinate axis (y//L’). 

Greek symbols 
effective thermal diffusivity 

; coefficient of thermal expansion 
e temperature, equation (4.2) 
V kinematic viscosity, p/p 

P dynamic viscosity 

P density 
streamfunction 

Z angle of inclination of the enclosure. 

Superscript 
dimensional quantities. 

Subscript 
max refers to maximum value. 

of a constant heat flux. Results available for the 
situation where a constant heat flux is applied on one 
[14] or two [lS] walls have been reported only for 
the case of a vertical cavity. The objective of the 
present work is to analyze the behavior of natural 
convection flows in rectangular, tilted, porous layers 
heated and cooled by constant heat fluxes. In the 
following sections, the differential equations, which 
describe the physical model considered here are for- 
mulated in a standard manner assuming the validity 
of Darcy’s law and the Boussinesq approximation. 
An approximate solution, valid for long, shallow 
cavities is developed. The results of the analysis are 
verified through numerical calculations. The agree- 
ment between numerical results and the proposed 
analysis is found to be very good. 

; ’ . 

FIG. 1. Definition sketch. 

2. STATEMENT OF THE PROBLEM 

Consider the natural convective motion of a fluid 
filling a homogeneous, isotropic, porous medium 
confined on all sides by an impermeable rectangular 
box. The enclosure, shown in Fig. 1, is of height H’, 
width L’ and is tilted at an angle 4 with respect to 
the horizontal plane. A uniform heat flux q’ is applied 
along both side walls such that 

q’= -kE 
w (2.1) 

Here, k is the thermal conductivity of the porous 

medium, T’ the temperature and primes denote 
dimensional variables. The two end walls are main- 
tained adiabatic. 

Assuming the validity of Darcy’s law and the 
Boussinesq approximation and neglecting inertial 
effects, the equations describing conservation of mass, 
momentum and energy in the medium are, respectively 

ati ad z+y=o ay 

li= -g 
( ’ 

*+pgcosl#l 
p axI > 

, 

(2.2) 
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(2.3) 

(2.4) 

where u’, VI, p’, g, K, ~1 and a stand for the velocity 
components in x’ and y’ directions, pressure, gravi- 
tational acceleration, medium permeability, viscosity 
and thermal diffusivity, respectively. 

As usual, the governing equations are simplified if 
ri and II’ are replaced by appropriately defining 
a streamfunction J/’ which satisfies the continuity 
equation (2.2) identically 

, w w u =w VI= --. 
axI 

(2.5) 

Further, the pressure terms appearing in equation 
(2.3) are eliminated through cross-differentiation. The 
momentum and energy equations become: 

(2.6) 
1 (2.7) 

where v is the kinematic viscosity p/p. 
Finally, equations (2.6) and (2.7) are put in a non- 

dimensional form by defining a new set of variables 

(x, Y) = w, Y’)lL’, ti = $‘/a, 

T= (T’- T;)/AT (2.8) 

where TA is the temperature at the geometric center 
of the cavity and AT’ = (q’L’)/k, a characteristic 
temperature difference. 

The resulting equations for the streamfunction $ 
and temperature T are: 

V2t+$ = -R ~COS~ - gsin$ 
ay 

V2T- a*aT *g 

ay ax ax ay 

(2.9) 

(2.10) 

where R is a Rayleigh number based on the constant 
heat flux q’ and the permeability K of the medium 

R = gBKL’2d 
-a- (2.11) 

The boundary conditions on Ic, and T are: 

*=0 g=o onx = +A/2 (2.12) 

$=O %=I ony = + l/2 (2.13) 

where A = H’/L’ is the cavity aspect ratio. 
The problem is to find the functions + and T which 

satisfy the governing equations (2.9) and (2.10) and 

boundary conditions (2.12) and (2.13) for the case of 
a long shallow cavity, i.e. for the condition A >> 1 
with fixed values of R. 

3. NUMERICAL SOLUTION 

To obtain numerical solutions of the complete 
governing equations (2.9) and (2.10), finite differences 
were used. The solution consists of the streamfunction 
and temperature fields as well as the velocity distri- 
bution in x and y directions. 

The energy equation was solved using the alternat- 
ing direction implicit (ADI) method of Peaceman and 
Rachford [ 163. The streamfunction field was obtained 
from equation (2.9) using the successive over-relax- 
ation method (SOR) and a known temperature distri- 
bution. Forward time and central space differences 
were used and the advective term in the energy 
equation was written in conservative form to preserve 
the transportive property. 

The number of grid points in the x and y directions 
were varied, depending upon the aspect ratio A of the 
cavity. As expected it was found that the necessary 
number of grid lines depended on the Rayleigh 
number R and the aspect ratio A of the cavity. Trial 
calculations were necessary in order to optimize 
computation time and accuracy. A grid of 51 x 51 was 
found to model accurately the flow fields described in 
the results for most of the cases considered. For 
instance, when R = 250, 4 = 90” and A = 4, Nusselt 
numbers of 4.587 and 4.546 and maximum stream- 
functions of 2.971 and 2.987 were obtained with 
51 x 51 and 81 x 81 meshes, respectively. For very 
high aspect ratios a mesh of 81 x 81 was utilized in 
the present study. 

The iterative procedure for the streamfunction was 
repeated until the following condition was satisfied: 

where the superscripts n and (n + 1) indicate the value 
of the nth and (n + 1)th iterations respectively and i 
and j indices denote grid locations in the (x, y) 
plane. Further decrease of the convergence criteria 
(0.5 x 10-3) did not cause any significant change in 
the final results. 

The steady state was defined based on the following 
criteria: 

ti 
“+I 
Inax - *Lx 

.,.n + 1 
< 0.5 x 10-3 (3.2) 

I Vmsx I 

where Ic/,,, is the maximum value of the stream- 
function inside the cavity. 

The number of iterations required for convergence 
was, in general, less than 1200. Convergence with 
mesh size was verified by employing coarser and finer 
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grids on selected test problems. Typical values of the 
time steps ranged from 10d3 to 10m4. The CPU time 
required for convergence was from 180 to 1200s on 
an IBM 4381 computer. 

In order to verify the convergence of the present 
numerical study, some of the cases considered by 
Shiralkar et a[. [S], for the natural convection in a 
vertical, rectangular, porous enclosure subjected to a 
horizontal temperature differential, were reproduced. 
In genera1 it was found that essentially identical flow 
and temperature patterns as well as the average heat 
transfer were obtained. For instance, when R = 500 

and A = 2.25, an overall Nusselt number of 9.998 was 
obtained in the present study while that reported by 
Shiralkar et al. was 10.073. As an additional check 
on the accuracy of the results, an energy balance was 
used for the system. For this the heat transfer through 
each plane y = constant was evaluated at each 
location -l/2 < y < l/2 and compared with the 
input at y = l/2. For most of the results reported here 
the energy balance was satisfied to within l-2%. 

4. LAYER HEATED FROM THE SIDE WALLS 

In this section an approximate solution to the 
governing equations (2.9) and (2.10) is sought for the 
case of a long, shallow cavity heated from the side by 
a constant heat flux. For this situation it is assumed 
that: 

A >> 1 with R constant. (4.1) 

The case of a long, shallow, horizontal, porous 
layer with the two vertical walls held at fixed but 
different temperatures and the horizontal surfaces 
maintained adiabatic has been studied in the past 
by Walker and Homsy [17]. By using matched 
asymptotic expansions it was shown that the flow 
inside the cavity may be decomposed into three parts; 
a core region of extent O(A) in the center of the cavity, 
and two end regions within an O(1) distance from the 
end walls. The solutions in the three regions are 
coupled by the matching requirements in the regions 
of overlap. Physically, the basic flow consists of a 
buoyancy-driven, parallel flow which is moderated 
by viscous effects over a length H’. The flow then 
turns through 180” in the end regions. This procedure 
will be followed in the present investigation in order 
to study both the effects of the inclination angle and 
the presence of constant heat fluxes imposed on two 
opposite walls. 

As already discussed in refs. [ 17-193 for the case 
of a thin porous layer (A >> 1) the flow within the core 
region of the cavity may be expected to be parallel. 
As a result the streamfunction and temperature field 
must be respectively of the following form [17]: 

and 

T = cx + e(y) (4.2) 

II/ = VYY) (4.3) 

where C, the temperature gradient along the x direc- 
tion, has to be determined from the thermal boundary 
conditions imposed on the end regions of the cavity. 

Substituting equations (4.2) and (4.3) into equations 
(2.9) and (2.10) one obtains respectively: 

and 

9 yyy - a?$ + c?CcotdJ = 0 (4.4) 

c*, - QYY = 0 

where a2 = RCsin4. 

(4.5) 

Integrating equations (4.4) and (4.5) and making 
use of equation (4.2) and the boundary conditions 
from equation (2.13), one obtains respectively: 

T=Cx+:sinhay+Cycotd (4.6) 

and 

B 
1(1 = -(coshay - cosha/2) 

C (4.7) 

where 

B = (1 - Cco@)/cosha/2. (4.8) 

The velocity component u is derived from equation 
(4.7) to be: 

u = $ sinh ay. (4.9) 

The value of the unknown constant C, the axial 
temperature gradient, has to be determined from the 
thermal boundary conditions imposed on the end 
walls. The constant C may be obtained in general by 
matching the core solution with solutions valid in the 
end regions. In the case of a porous cavity with 
isothermal end walls, such a solution has been 
developed formally by Walker and Homsy [17] and 
a first-order description of the entire flow field, 
including the corner interaction regions was obtained. 
However it was shown by Bejan and Tien [18] that, 
in order to determine the constant C, which defines 
the core flow, a detailed analysis of the end regions 
is not absolutely necessary. In fact the constant C 
may be evaluated simply by matching the core region 
with an integral solution for the flow and temperature 
field in the end region. In the case of a cavity with 
isothermal vertical walls, this was done by selecting 
reasonable profiles for the velocity and temperature 
distributions inside the end regions. In the present 
problem, due to the fact that a constant heat flux is 
imposed on the vertical walls, a guess of the velocity 
and temperature profiles inside the end regions is not 
even required to solve the core region [lS]. The 
value of the constant C may be obtained simply by 
considering the arbitrary control volume of Fig. 1. 
Integration of equation (2.10), together with boundary 
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conditions (2.12) and (2.13), yields the following equ- 
ation: 

i‘I;,[uT’-g]dy=O 

at any position x. 

(4.10) 

Substituting equations (4.6) (4.8) and (4.9) into 
(4.10) and integrating yields: 

- Bcot4cosha/2pF - I]. (4.11) 

The value of the axial temperature gradient C may 
be evaluated, for a given Rayleigh number R and 
inclination angle 4 from the above equation. 

The Nusselt number predicted by the present analy- 
sis is derived by first evaluating the wall-to-wall 
dimensionless temperature difference, taken arbi- 
trarily at the position x = 0 since the temperature of 
each thermally active wall varies linearly in x. Thus 

AT= T,,,,, - To.-w = 2To.1~ 

= ysinh; + Ccot& (4.12) 

The Nusselt number Nu is given by 

a 

= 2B sinha/ + Ca cot4 
(4.13) 

where AT is the actual wall-to-wall temperature 
difference. 

Figure 2 presents the results for Nusselt number 
Nu as a function of the angle of inclination 4 for 
Rayleigh numbers of 20, 100 and 500, respectively. 
No numerical results are presented for R > 500 since 
they did not provide sufficient additional insight into 
the problem and also the computing time necessary 
to obtain an accurate steady-state solution became 
rapidly prohibitive. Also shown in the figure are 
results of numerical calculations for cavities with 
aspect ratios A = 3, 4 and 5. An excellent agreement 
between the analytical and numerical results is 
observed in the range of the parameters considered. 
The orientation angle 4 is seen to have a dominant 
effect on the Nusselt number for a given Rayleigh 
number. As the angle of inclination 4 approaches O”, 
the Nusselt number tends toward unity, indicating 
that the heat transfer is mainly due to conduction. 
This is expected since 4 = 0” corresponds to the case 
of a cavity heated from the top which causes no 
convection as the density gradient is stable. Most of 
the change in the heat transfer occurs in the range 
0 < 4 < 7r/2 where the cavity is heated from the top. 
Also, it is noticed that the Nusselt number is a strong 

c - ANALYTICAL RESULTS 
0 

6 

NU 

01 I I I I 
0 rr xc lT 

4 %  

+ 4 

FIG. 2. Effect of inclination angle C$ on the Nusselt number 
NIL 

function of the Rayleigh number. As the inclination 
angle 4 is increased above n/2, the enclosure starts 
to be heated from the bottom. The Nusselt number 
continues to increase with increasing 4, passes 
through a peak and then begins to decrease. The 
effect of heating the cavity from the top 0 < 4 < 7(/2 
on the Nusselt number is seen to be large in compari- 
son with that of heating from the bottom n/2 < 4 < 7~. 
It is also noticed that the effect of inclination angle on 
Nusselt number is more pronounced as the Rayleigh 
number is increased. The peak in Nusselt number 
occurs at about 125” for R = 500 but it is at about 
135” for R = 20. Therefore, the peak in Nusselt 
number takes place at a lower inclination angle when 
Rayleigh number is increased. A similar trend has 
been reported in the case of inclined fluid cavities 
containing two opposite isothermal surfaces main- 
tained at different temperatures [20-221. 

The maximum value of the streamfunction ICI,,, and 
the velocity profiles at a position x = 0 as a function 
of the inclination angle 4 and Rayleigh number R are 
presented in Figs. 3 and 4, respectively. The curves 
illustrate the fact that the convection becomes more 
and more vigorous as the orientation angle of the 
cavity is increased. It is observed from Fig. 3 that the 
curves for II/,,. reach a maximum value when the 
cavity is heated from the bottom. However, contrary 
to the results obtained for the Nusselt number, the 
peak in the maximum streamfunction shifts towards 
4 = K as the Rayleigh number is increased. A similar 
trend has been reported in the past by Robillard et 
al. [23] while considering the natural convection heat 
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NUMERICAL 

-10 
RESULTS 

- ANALYTICAL RESULTS 

0 lT TT l7 

4 

z 4 

FIG. 3. ElTect of inclination angle 4 on the maximum value 
of streamfunction I/I,,.. 

transfer within an annular porous layer having its 
inner boundary isothermal and its outer boundary 
subjected to a thermal stratification arbitrarily ori- 
ented with respect to the gravity. From Fig. 4 it is 
seen that the velocity is maximum at a position 
4 E 37114 which corresponds, as discussed previously, 
with the maximum in the heat transfer rate. In both 
Figs. 3 and 4 the numerical results are seen to be in 
excellent agreement with the analytical solution. 

As mentioned before, Bories and Combarnous [S] 

0 

01 

Y 

-0’ 

5 

r 

3 

t 

have reported an experimental study of thermal 
convection in a three-dimensional, tilted, porous box 
bounded by two parallel, impermeable planes main- 
tained at different temperatures. Several types of flow 
were observed: a unicellular two-dimensional motion 
and a juxtaposition of longitudinal coils or polyhedral 
cells. In particular, three-dimensional hexagonal cells 
were observed for tilt angles smaller than 15”. Caltagi- 
rone and Bories [13] have demonstrated that the 
above experimentally observed structure can be pre- 
dicted by a three-dimensional numerical model. For 
the present case of an inclined layer heated by a 
constant heat flux, no experimental or three-dimen- 
sional results have been reported in the literature. 
Nevertheless, the rich variety of flow patterns 
described above can reasonably be also expected to 
occur. The analytical and numerical results presented 
here on the basis of a parallel flow are expected to 
closely predict the appearance of the two-dimensional 
flow regime but are obviously unable to predict the 
three-dimensional patterns. 

4.1. The oertical layer heated from the side 
The case of a vertical layer heated from the side 

with a constant heat flux is of practical interest. 
For this particular position 4 = n/2, a2 = RC and 

equations (4.6)-(4.8) (4.10) and (4.12) reduce to 

T=Cx+ 
sinh ay 

u cash u/2’ 
Nu = ;coth s(J2 (4.14) 

(4.15) 

R sinhu - u 
C=- [ 1 2u3 cosh2a/2 

(4.16) 

The boundary layer regime inside a vertical porous 

-ANALYTICAL SOLUTION 

0 NUMERICAL SOLUTION 
(A =4) 

u 

FIG. 4. Effect of inclination angle 4 on velocity profiles at x = 0 for A = 4 and R = 100. 
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cavity with uniform heat flux from the side has been 
studied recently by Bejan [lS]. The boundary-layer 
equations were solved by simplifying the convective 
transport terms in the energy equation in a way 
analogous to that accomplished by the method of 
0se:n linearization in the analysis of iow Reynolds 
number flows. The resulting velocity and temperature 
fields in the vicinity of the vertical walls was found 
to be exponentially varying. It was also demonstrated 
that the vertical boundary-layer thickness is constant 
with altitude and the core region inside the cavity is 
motionless and linearly stratified. It is interesting to 
note that Bejan’s solution may be recovered as a limit 
case of the present study. Hence when R >> 1, it 
may be easily shown that a - R2js, C - R-‘/5 and 
equations (4.6)-(4.9) and (4.13) reduce to: 

T=X+le-UB 

&” 

(4.17) 

* = J&-“Y; u = a3/2e-W (4.18) 

Nu=C( 
2 

(4.19) 

where j = y - l/2, 
The above equations are the same as those obtained 

by Bejan [IS] when translated into corresponding 
notations. It is worthwhile to mention that the equa- 
tions presented by Bejan in his paper are written 
explicitly in terms of the aspect ratio A of the cavity. 
However, as demonstrated by equations (4.17)-(4.19), 
the aspect ratio is not a parameter in this type of 
problem and in fact may be eliminated from Bejan’s 
results by a simple renormalization of his equations. 

Figure 5 shows the effect of Rayleigh number R on 
Nusselt number Nu for inclination angle 4 = z/2 
and aspect ratio 2 < A 6 10. The present analytical 
solution, equation (4.14), is compared with the numeri- 
cal results of Bejan [IS] and those obtained in this 
study. Figure 5 also shows the Nusselt number 
predicted for the boundary-layer flow regime, equ- 
ation (4.19). In the case of a slow motion, R c 1, it 
may be shown from equations (4.14) and (4.16) that 
the Nusselt number predicted by the present theory 
is given by Nu % 1 + RZ/144. It is seen from Fig. 5 
that all results are in good agreement. It is also 
noticed that the boundary-layer solution, equation 
(4.191, predicts accurately the Nusselt number for 
Rayleigh numbers higher than approximately R = 25. 
Finally it must be mentioned that, contradictory to 
the case of a porous cavity whose vertical walls are 
isothermally maintained [24], the numerical results 
obtained in the present study, for a cavity heated by 
constant heat fluxes, show no dependence on the 
aspect ratio when A 3 2. This point is illustrated in 
Fig. 5 where the numerical results, obtained for A = 3, 
4, 5 and 10, are seen to be in good agreement with 
the aspect ratio independent correlation predicted by 
equation (4.19). However, as discussed by Bejan [15] 
and Prasad and Kulacki [24] the structure of the 

flow and temperature patterns resulting from these 
two types of boundary conditions are considerably 
different. 

4.2. The horizontal layer heated from the bottom 
It is of interest to examine the case of a horizontal 

layer heated from the bottom with a constant heat 
flux. For this situation 4 = n and a + 0% and it may 
be shown that the flow and temperature fields are 
given by: 

T_Cx+y[l +~~-~)I (4.20) 

+I~-$; u=RCy (4.21) 

or C = 0 (4.22) 

Nu = l/(1/6 + 10/R), or Nu = 1. (4.23) 

From equation (4.22) it is seen that for Ra < 12 the 
present analysis predicts that no motion may be 
induced inside the cavity. It is interesting to mention 
that the onset of convection, induced by buoyancy 
effects resulting from vertical thermal gradients, in a 
horizontal layer of a saturated porous medium, has 
been studied in the past by Nield [25]. Using a linear 
perturbation analysis the critical Rayleigh numbers 
for the onset of convection were obtained for various 
thermal boundary conditions imposed on the bound- 
aries of the horizontal layer. For the case of the 
boundary conditions considered in the present study, 
i.e. rigid horizontal walls heated from the bottom and 
cooled from the top by a constant heat flux, a critical 
Rayleigh number of R = 12 was predicted for the 
onset of convection. This result is in agreement with 
the prediction of equation (4.22). Numerical tests, 
performed for a cavity with aspect ratio A = 4, have 
also shown that for R < 12 no convective motion 
may be induced inside the cavity. For values of R > 12 
the flow inside the cavity was found to depend upon 
the Rayleigh number and the initial conditions used 
to initiate the flow. For instance the numerical results 
presented in Fig. 6(a) for the case R = 50, A = 4 and 
Cp = 180” were obtained by using as initial conditions 
the steady-state solution indicating a unicellular flow 
regime obtained previously with the same parameters 
but at an inclination angle d, = 175”. A steady- 
state unicellular flow was obtained and the resulting 
velocity profile depicted in Fig. 4 is seen to be in 
excellent agreement with that predicted by the present 
theory. However, this type of flow does not seem to 
have been observed experimentally in the past. On 
the other hand when pure conduction temperature 
profiles with no motion were used as initial conditions 
it was found that a steady-state multicellular flow 
pattern (Fig. 6(b)) was induced by the roundoff errors 
generated in the numerical computations. Also it 
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FIG. 5. EfTect of Rayleigh number R on the Nusselt number Nu for a vertical cavity (C#J = 42) heated from 
the side. 

should be mentioned that, for very high values of the 
Rayleigh number, no steady unicellular flow could be 
maintained inside the cavity independently of the 
initial conditions used to start the flow. In fact, when 
the angle of inclination is approaching 180”, the flow 
might not be two-dimensional as assumed in the 
theoretical and numerical solutions. For instance, 
experimental observations and three-dimensional 
numerical simulations have shown that, in the case 
of a tilted, porous, rectangular cavity, the flow remains 
two-dimensional for 0 < 4 < 173” but for 4 > 173”, 
oblique rolls were obtained [8]. The multicellular 
flow pattern depicted in Fig. 6b is similar to the 
classical Benard cells observed in a confined porous 
medium heated from below at a constant temperature. 
For this situation it was found by Lapwood that the 
critical Rayleigh number at which the heat transport 
process changes from purely conductive to convective 
transfer was R = 4x2, i.e. approximately three times 
higher than the value R = 12 reported by Nield [25] 
for the present situation. It is also observed in Fig. 
6(b) that, due to the thermal boundary conditions 
considered in this study, the temperature on the 
horizontal planes is not uniform but rather varies 
periodically from a maximum to a minimum value. 

Figure 7 shows a comparison between the theoreti- 
cal Nusselt number predicted by equation (4.23) and 
numerical results obtained for cavities with aspect 
ratios A = 2, 3 and 4. In all the numerical results 
presented in Fig. 7 the flow inside the cavity was 
steady and unicellular. 

5. LAYER HEATED FROM THE END WALLS 

In this section we consider the case where a constant 
heat flux is imposed on the end walls of the porous 
layer while its side walls are maintained adiabatic. To 
this end, the constant heat flux imposed on the side 
walls in Fig. 1 is replaced by adiabatic conditions and 
the end walls are now subjected to a constant heat 

flux. For this situation the flow and temperature fields 
are described by equations (2.9) and (2.10) subjected 
to the following boundary conditions: 

onx = *A/2 (5.1) 

*=0 $=o ony = *l/2. (5.2) 

Proceeding as in Section 4 it may be shown that 
the solution for the temperature field, streamfunction 
and velocity profiles are given by equations (4.6), (4.7) 
and (4.9) respectively where the constant B is now 
given, for the present situation, by 

B = - C cotr$&osh a/2. (5.3) 

Integrating the energy equation (2.10) over the 
control volume of Fig. 1 and making use of the 
boundary conditions (5.1) and (5.2) one obtains: 

j-;:‘,cuT- g)dy = -1. (5.4) 

Substituting equations (4.6), (4.9), (5.3) into (5.4) 
and integrating yields: 

c _ I _ Bcot4 (sinha - a) 

a [ 2cosh a/2 

+ (2sinh a/2 - a cash a/2) 1 . (5.5) 

Figure 8 presents the maximum value of the stream- 
function *,., as a function of the inclination angle 4 
for Rayleigh numbers R of 20,50 and 100 as predicted 
by equations (4.7), (5.3) and (5.5). Also shown in Fig. 
8 are results of numerical calculations for cavities 
with aspect ratios A = 3, 4 and 5. The effect of 
inclination angle C$ on temperature profiles at x = 0 
for A = 4 and R = 100 is illustrated in Fig. 9. A 
good agreement between the analytical and numerical 
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(b) 
FIG. 6. Streamlines and isotherms for a horizontal layer heated from the bottom (4 = n) for A = 4 and 

R = 50. 
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FIG. 7. Effect of Rayleigh number R on the Nusselt number Nu for a horizontal cavity (4 = n) heated 
from the bottom. 

results is observed. It must be mentioned at this stage 
that the Nusselt number Nu predicted by the present 
theory, for the case of a layer heated from the end 
walls, was not found to be in good agreement with 
the results of the numerical solution, especially when 
the Rayleigh numbers are large. This is due to the 
fact that the Nusselt number, defined by equation 
(4.13), is based on the knowledge of the averaged 
temperature difference between the two heated walls. 
However the theoretical temperature distribution 
given by equations (4.6), (5.3) and (5.5) is valid only 
in the core region of the cavity and becomes a very 
poor approximation in the end regions near the 
heated walls. Hence a good agreement between the 
theoretical and the numerical Nusselt numbers cannot 
be expected. 

For the case of a horizontal layer heated from the 
side C$ = 0 and CY -P Or it may be shown from equations 
(4.6), (4.7), (4.9), (5.3) and (5.5) that the temperature 
and flow fields are described by 

6.0 
t 

-ANALYTICAL 
RESULTS 

FIG. 8. Effect of inclination angle 4 on the maximum value 
of streamfunction +,.. 
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FIG. 9. Effect of inclination angle I$ on temperature profiles at x = 0 and A = 4 and R = 100. 

(5.6) 

,,b= -F (5.7) 

where the value of C is given by 

C3R2 + 120C - 120 = 0. (5.8) 

This problem has been studied recently by Vasseur 
et al. [19] for a wide range of Rayleigh numbers 
lo-‘<R<103 and aspect ratios 10 < A < 3. It was 
demonstrated that the above analytical solution was 
in good agreement with a numerical solution of the 
full governing equations (2.9)-(2.13) provided that 
both the Rayleigh number and the inverse of the 
aspect ratio be relatively not too large. For instance, 
when A = 4, the flow was demonstrated to remain 
parallel for R < 625. As the aspect ratio of the cavity 
is increased, the maximum Rayleigh number for which 
the flow maintains its parallel character also increases. 
Also, the existence of multicellular flows similar to 
those observed numerically by Prasad and Kulacki 
[24] and experimentally by Ostrach et al. [27] in 
their study of natural convection in shallow cavities 
bounded by isothermal vertical walls, has been dis- 
cussed in ref. [19]. It was found in particular that, 
relative to the case where the temperature is specified 
along the side walls, the imposition of temperature 
derivative (4’) has a stabilizing effect on the flow 
structure. As a result, with the present boundary 
conditions, the flow structure becomes multicellular 
for Rayleigh numbers approximately three orders of 
magnitude higher than the values reported by ref. 
[24] for shallow cavities isothermally heated from the 
side. 

It is also of interest to consider the case of a vertical, 
porous layer heated from the bottom with a constant 
heat flux. For this situation 4 = -n/2 and a2 = RC, 
and it may be shown that: 

T=$x+Dsinny (5.9) 

DR 
f+b = ;cosny; u = -DR sinny (5.10) 

where the value of D is given by 

D = +,/m/R, orD = 0. (5.11) 

From equation (5.11) it is predicted that a convec- 
tive motion inside the cavity may be generated only 
for R > n2. This critical Rayleigh number for the 
onset of convection has been verified numerically and 
it was found that, for R < n2, the fluid was indeed 
motionless and thermally stratified. However, as illus- 
trated in Fig. 10, for R > n2, a flow field is induced 
inside the cavity resulting in a single cell circulating 
clockwise or counterclockwise depending on the 
roundoff errors generated in the numerical compu- 
tation?. 

Figure 11 presents a comparison between the theor- 
etical sinusoidal velocity profiles predicted by equ- 
ation (5.10) at the position x = 0 and the numerical 
results for R = 20, 50 and 100 and A = 4. A good 
agreement between both results is observed. 

6. CONCLUSIONS 

The problem of natural convection in a two- 
dimensional, inclined porous layer with uniform heat 
flux from two opposite walls while the other walls are 
insulated has been studied both numerically and 
theoretically. An approximate analytical solution was 
obtained by assuming the natural convection pattern 
to consist of a core region situated in the middle of 
the porous layer in addition to the two end regions. 
When the aspect ratio of the cavity is large (A >> 1) 
the streamlines in the core region are essentially 
parallel to the boundaries of the cavity. The main 
conclusions of the present analysis are: 
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FIG. 10. Streamlines and isotherms for a vertical layer heated 
from the bottom (4 = -x/2) for A = 4 and R = 100. 
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FIG. 11. Etfect of Rayleigh number R on velocity profiles at 
x = 0 for a vertical layer heated from the bottom (I$ = -n/2). 

6.1. Cavity heated from the long side walls 

(9 

(ii) 

The orientation of the cavity has, for a given 
Rayleigh number, a large effect on the heat transfer 
rate. The maximum heat transfer occurs when the 
enclosure is heated from the bottom 
90” < C$ < 180”. As the Rayleigh number 
increases the angle at which maximum energy 
transfer takes place shifts towards lower values 
of f#l. 
In the case of a vertical layer heated from the 
side ($J = 90”) the temperature and velocity fields 
predicted by the present study for boundary-layer 
regime (R >> 1) are in agreement with Bejan’s 
solution [lS] obtained by solving the boundary- 
layer equations by a linearization technique. 

(iii) In the case of a horizontal layer heated from the 
bottom (4 = n) the present theory indicates that 
no flow can be initiated when R < 12. A similar 
result has been predicted in the past by Nield 
[25] on the basis of a stability analysis. For 
R > 12 both unicellular and multicellular flows 

may be observed in the cavity, depending on 
the Rayleigh number, aspect ratio and initial 
conditions used to initiate the flow. 

6.2. Cavity heated from the short end walls 
(i) The effect of the orientation angle on the flow 

field was found to be similar to that observed for 
the cavity heated from the long side walls. 

(ii) In the case of a vertical layer heated from the 
bottom (4 = -n/2) the present theory predicts 
a motionless fluid when R < x2. This critical 
Rayleigh number for the onset of convection has 
been confirmed by numerical simulations. 

The main features of the approximate theoretical 
solution have been tested by a numerical solution of 
the full governing equations in the range 20 < R < 50, 
2 < A < 10 and 0 < C$ < II for the cavity heated from 
the long side walls and -n/2 < 4 < n/2 for the cavity 
heated from the short end walls. Finally, it should be 
noted that the scope of this study is limited by the 
assumption of two-dimensional steady laminar flow, 
i.e. nothing can be inferred about the possible develop- 
ment of various types of instabilities that could lead 
to an unsteady and/or three-dimensional flow within 
the range of Rayleigh numbers and inclination angles 
considered in the present study. 
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CONVECTION NATURELLE DANS UNE COUCHE POREUSE, MINCE, INCLINEE, 
EXPOSEE A UN FLUX DE CHALEUR CONSTANT 

RbumP--On &udie analytiquement et numeriquement une cavittt rectangulaire mince, inclinee, remplie 
par un milieu poreux saturte de fluide. Un flux thermique constant est appliqut pour chauffer et refroidir 
les deux parois oppostes de la couche, tandis que les autres parois sont isoltes. Sur la base des Cquations 
de DarcyyOberbeck-Boussinesq, le problkme est r&olu analytiquement, dans la couche mince, en utilisant 
un dkveloppement asymptotique. et une forme intkgrale de I’kquation d’knergie. Des solutions pour les 
deux champs, distributions de temptrature et nombres de Nusselt sont obtenus explicitement en fonction 
du nombre de Rayleigh et de I’angle d’inclinaison de la cavitk. Une itude numtrique du m&me ph&nom&ne 
est conduite en rt’solvant le systtme complet des iquations de base. Un bon accord est trouvC entre les 

calculs analytiques et la simulation numtrique. 

NATijRLICHE KONVEKTION IN EINER DUNNEN, GENEIGTEN, POR(ZSEN SCHICHT 
BEI KONSTANTER WARMESTROMDICHTE 

Zusammenfassung-Die natiirliche Konvektion in einem diinnen. rechteckigen und geneigten Hohlraum, 
der mit einer iiberfluteten Schiittung gefiillt ist, wird analytisch und numerisch untersucht. Die beiden 
gegeniiberliegenden WInde werden mit konstanter Wlrmestromdichte geheizt bzw. gekiihlt, wghrend 
die beiden anderen Winde warmegedimmt sind. Auf der Grundlage der Darcy-Oberbeck-Boussinesq 
Gleichungen wird das Problem fiir eine diinne Schicht analytisch mit Hilfe der asymptotischen Ngherung 
und einer Integralform der Energiegleichung gel&t. Liisungen fiir die Stromlinienfelder, Tem- 
peraturverteilungen und Nusselt-Zahlen werden explizit als Funktion der Rayleigh-Zahl und des Nei- 
gungswinkels ermittelt. Eine numerische Untersuchung desselben Phiinomens. der eine vol!stCndige Lijsung 
der beschreibenden Gleichungen zugrundeliegt, wurde ebenfalls durchgefiihrt. Gute ubereinstimmung 

zwischen analytischen und numerischen Ergebnissen wurde erreicht. 
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ECTECTBEHHAR KOHBEKqHR B TOHKOM HAKJIOHHOM l-iOPUCTOM CJIOE IIPIl 
lTOCTORHHOM TEl-IJIOBOM IIOTOKE 

~oT~~-AH~uTu~~K~ II wcneHH0 iiccnexyeTca ~b43wni0e pa3HwbKt TebinepaTyp TeYeHiie is 

HaKJlOHHOfi np,lMOyTO,lbHOi IIOnOCTH He6OJIblUOfi BblCOTM, 3tlIlOnHeHHOii HaCMUeHHbIM WSAKOCTbK) 

IlOpEiCTblM MaTepUZUOM. OAHa 113 nB)‘X IIpOTbiBO~OJIOXHIdX CTeHOK IlOnOCTH HarpfsaeTCK, a BTOpUl- 

OXJIUKACieTCII ItOCTOAHWbtM TelInOBbIM I'IOTOKOM, B TO BPeMSl KaK ABe ApFHe CCeHKH TellnOH3OnHpO- 

BaHbI. 113 ypaeHemiZi AapcH-06ep6era-EiyccuHecIta nonygeH0 ammimwc~oe pewewe 3ana9a a 
npe6nuneHm TOHKO~O cnos c mnonb308aHiteM acmfnT0mwcmx pa3noXetieii H 3urTerpanbHoii 
+OPMM ypaBHeHsis 3Heprw. PeureHun arm none6 TeqeHH~,~~~xeneH~~ TebfnepaTyp a pa3nHwbix 

snareid wicna HyCCeJIbTa LfaHbi B 11wior4 ewe B ~~BH~EMO~TH OT wzna P3nes H yrna HaKnofia 

IIO.~~~TB. IIpoBeneHo TaKxce 5iccnexoBaHiie 3foii xce 3anaw iia 0cHoBe sfcneworo peruensisf noniioif 

CHCTeMbl OCHOBHbIX J'paBHeHEiii. nOnyYeH0 XOpOlIE COOTBeTCTBBe MeWly &E3yJlbTaTaMSi aHEUlHTlTRYeC- 

KWXpaC'ieTOBUWiCJteHHOI'OMOAeJtHpOBaHHfI. 


