Int. J. Heat Mass Transfer. Vol. 30, No. 3, pp. 537549, 1987
Printed in Great Britain

0017-9310/87 $3.00 + 0.00
Pergamon Journals Ltd.

Natural convection in a thin, inclined, porous layer
exposed to a constant heat flux

P. VASSEUR, M. G. SATISH and L. ROBILLARD
Ecole Polytechnique, Montreal, P.Q., Canada H3C 3A7

(Received 30 January 1986 and in final form 9 July 1986)

Abstract—Thermally driven flow in a thin, inclined, rectangular cavity—filled with a fluid-saturated,
porous layer—is studied analytically and numerically. A constant heat flux is applied for heating and
cooling the two opposing walls of the layer while the other two walls are insulated. On the basis of the
Darcy—Oberbeck—Boussinesq equations, the problem is solved analytically, in the limit of a thin layer,
using asymptotic expansions and an integral form of the energy equation. Solutions for the flow fields,
temperature distributions and Nusselt numbers are obtained explicitly in terms of the Rayleigh number
and the angle of inclination of the cavity. A numerical study of the same phenomenon, obtained by solving
the complete system of governing equations, is also conducted. A good agreement is found between the
analytical predictions and the numerical simulation.

1. INTRODUCTION

OVER the past years considerable research efforts
have been devoted to the study of heat transfer in
cavities filled with a fluid-saturated, porous medium.
To a large extent, this interest is stimulated by the
fact that thermally driven flows in porous media are
of considerable engineering interest. These problems
arise in the design of pebble bed nuclear reactors,
catalytic reactors, compact heat exchangers, solar
power collectors, geothermal energy conversion, use
of fibrous materials in the thermal insulation of
buildings and geophysical flows. Another important
area of application is heat transfer from the storage
of agricultural products which generate heat as a
result of metabolism. An excellent review of existing
experimental and numerical results have been pre-
sented by Combarnous and Bories [1] and Catton
[2].

The purpose of the present study is to examine the
effects of natural convection in an inclined, rectangu-
lar, porous layer when a constant heat flux is applied
on two opposing walls, while the other two walls are
maintained adiabatic. The layer is referred to as
being horizontal, vertical or tilted, depending on the
orientation of its thermally active walls with respect
to the gravity acceleration vector. A review of the
literature shows that most previous theoretical publi-
cations deal with vertical [3-5] or horizontal [6,7]
cases. For situations involving inclined layers, avail-
able studies are relatively limited. The problem of a
sloped porous layer, heated isothermally from below,
has been considered theoretically and experimentally
by Bories and Combarnous [8]. Depending on the
values of the slope of the layer and the Rayleigh
number, different shapes of free convection move-
ments have been observed. Hence, a two-dimensional
stable unicellular flow takes place in the layer if

R < 4n?/cos¢, where ¢ is the angle between the
heated wall and the horizontal plane. On the other
hand when the Rayleigh number is higher than this
critical value a transition from unicellular flow to
stable three-dimensional flow is observed. The result-
ing -convective movements take then the form of
polyhedral cells for ¢ lower than about 15° while for
higher values of ¢ it consists of adjacent longitudinal
coils climbing up along the direction of the slope.
Finally for very high Rayleigh numbers it was found
that, depending on the slope of the layer, a fluctuating
regime or a wavy coils regime could be observed.
Convection in a tilted, porous box—with two parallel
isothermal planes and the other limits insulated—has
been studied numerically by Vlasuk [9] for the range
A=1, —90° < ¢ <90° and R < 350. It was found
that the tilt angle, for maximum heat transfer, is
approximately 50°. Holst and Aziz [10], considering
temperature-dependent physical properties, investi-
gated the heat transfer of a tilted square of porous
material. Steady natural convection in a slightly
inclined, rectangular, porous box has been studied by
Walch and Dulieu [11] using the Galerkin method.
A correlation for the Nusselt number as a function
of Rayleigh number, aspect ratio and tilt angle has
been obtained by these authors. More recently, the
existence of multiple solutions, in a slightly inclined,
porous cavity heated from the bottom, has been
studied numerically by Walch and Dulieu [11], Moya
et al. [12] and analytically by Caltagirone and Bories
[13] who determined their stability. It was demon-
strated that, for small angles of inclination, three
different real solutions may exist for a given Rayleigh
number and aspect ratio.

All the above studies have considered cavities
with isothermal walls despite the fact that in many
engineering applications the temperature of a wall is
not uniform but, rather, is a result of the imposition
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thickness of the cavity

thermal conductivity of fluid-saturated,
porous medium

K  permeability

L’ length of the cavity

C

g gravitational acceleration
H

k

Nu  Nusselt number, equation (4.13)
r pressure

] dimensionless pressure, [p’'/(au/k)]
q constant heat flux

R Rayleigh number, gBKL*q'/kav
T'"  temperature

Ty,  reference temperature at x =y =0

AT wall-to-wall temperature difference at
x = 0, equation (4.12)
AT’ characteristic temperature difference,
q'L'/k
! velocity in x’ direction
v velocity in y’ direction

NOMENCLATURE
A aspect ratio of the cavity, H'/L’ u dimensionless velocity in x direction
B coefficient in equation (4.8) and (WL /o)
equation (5.3) v dimensionless velocity in y direction
temperature gradient along x direction ('L fo)

coordinate axis along side walls (Fig. 1)
coordinate axis along end walls (Fig. 1).
dimensionless coordinate axis (x'/L)
dimensionless coordinate axis (y'/L’).

~ X~ =

Greek symbols

o effective thermal diffusivity

B coefficient of thermal expansion

6 temperature, equation (4.2)

v kinematic viscosity, u/p

u dynamic viscosity

P density

v streamfunction

¢ angle of inclination of the enclosure.
Superscript

¢ dimensional quantities.
Subscript

max refers to maximum value.

of a constant heat flux. Resuilts available for the
situation where a constant heat flux is applied on one
[14] or two [15] walls have been reported only for
the case of a vertical cavity. The objective of the
present work is to analyze the behavior of natural
convection flows in rectangular, tilted, porous layers
heated and cooled by constant heat fluxes. In the
following sections, the differential equations, which
describe the physical model considered here are for-
mulated in a standard manner assuming the validity
of Darcy’s law and the Boussinesq approximation.
An approximate solution, valid for long, shallow
cavities is developed. The results of the analysis are
verified through numerical calculations. The agree-
ment between numerical results and the proposed
analysis is found to be very good.

2. STATEMENT OF THE PROBLEM

Consider the natural convective motion of a fluid
filling a homogeneous, isotropic, porous medium
confined on all sides by an impermeable rectangular
box. The enclosure, shown in Fig. 1, is of height H’,
width L’ and is tilted at an angle ¢ with respect to
the horizontal plane. A uniform heat flux ¢’ is applied
along both side walls such that

T’

= —
q ayl

Here, k is the thermal conductivity of the porous

Q.1

CONTROL
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N

FIG. 1. Definition sketch.

medium, T’ the temperature and primes denote
dimensional variables. The two end walls are main-
tained adiabatic.

Assuming the validity of Darcy’s law and the
Boussinesq approximation and neglecting inertial
effects, the equations describing conservation of mass,
momentum and energy in the medium are, respectively

o o

._ _Kfop
W= — u(@x’ + ngOS¢),



Natural convection in a thin, inclined, porous layer exposed to a constant heat flux
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where v, v/, p', g, K, u and « stand for the velocity
components in x’ and y' directions, pressure, gravi-
tational acceleration, medium permeability, viscosity
and thermal diffusivity, respectively.

As usual, the governing equations are simplified if
« and v are replaced by appropriately defining
a streamfunction ¥’ which satisfies the continuity
equation (2.2) identically

L ,

Ve OT

oy’
—a 2.5)

Further, the pressure terms appearing in equation
(2.3) are eliminated through cross-differentiation. The
momentum and energy equations become:

VZ,/,' = __Ifg_ﬁ[gl

0S¢ — ZZ: sinqb] (2.6)

x ©
1| oy’ T oY’ oT’
2 _ V227 _Zr -
VT = a[ﬁy' ox  ox 6y’:| @7

where v is the kinematic viscosity u/p.
Finally, equations (2.6) and (2.7) are put in a non-
dimensional form by defining a new set of variables

(,y) =&YYL, =¥/

T=(T — TY/AT (2.8)

where T is the temperature at the geometric center
of the cavity and AT =(q'L')/k, a characteristic
temperature difference.

The resulting equations for the streamfunction
and temperature T are:

Vi = —R(——%: cosp — _66;1; sin¢) 2.9
o oT oYorT
2 = ———— e o —
VT gy (2.10)

where R is a Rayleigh number based on the constant
heat flux ¢’ and the permeability K of the medium

_8BKL’q
R= o .11
The boundary conditions on § and T are:
oT
y=0 Z-=0 onx=t42 (212)
oT
v=0 = ony=+1/2 (213)

where A = H'/L' is the cavity aspect ratio.
The problem is to find the functions ¢ and T which
satisfy the governing equations (2.9) and (2.10) and

539

boundary conditions (2.12) and (2.13) for the case of
a long shallow cavity, i.e. for the condition 4 >» 1
with fixed values of R.

3. NUMERICAL SOLUTION

To obtain numerical solutions of the complete
governing equations (2.9) and (2.10), finite differences
were used. The solution consists of the streamfunction
and temperature fields as well as the velocity distri-
bution in x and y directions.

The energy equation was solved using the alternat-
ing direction implicit (ADI) method of Peaceman and
Rachford [16]. The streamfunction field was obtained
from equation (2.9) using the successive over-relax-
ation method (SOR) and a known temperature distri-
bution. Forward time and central space differences
were used and the advective term in the energy
equation was written in conservative form to preserve
the transportive property.

The number of grid points in the x and y directions
were varied, depending upon the aspect ratio A4 of the
cavity. As expected it was found that the necessary
number of grid lines depended on the Rayleigh
number R and the aspect ratio A of the cavity. Trial
calculations were necessary in order to optimize
computation time and accuracy. A grid of 51 x 51 was
found to model accurately the flow fields described in
the results for most of the cases considered. For
instance, when R = 250, ¢ = 90° and A = 4, Nusselt
numbers of 4.587 and 4.546 and maximum stream-
functions of 2971 and 2987 were obtained with
51 x 51 and 81 x 81 meshes, respectively. For very
high aspect ratios a mesh of 81 x 81 was utilized in
the present study.

The iterative procedure for the streamfunction was
repeated until the following condition was satisfied:

TEW -
Yl

<05 x 1073 3.1)

where the superscripts n and (n + 1) indicate the value
of the nth and (n + 1)th iterations respectively and i
and j indices denote grid locations in the (x,y)
plane. Further decrease of the convergence criteria
(0.5 x 1073) did not cause any significant change in
the final results.

The steady state was defined based on the following
criteria:
n+1

 afet
max max|

n+1
max

<05x 1072 (32

where ., is the maximum value of the stream-
function inside the cavity.

The number of iterations required for convergence
was, in general, less than 1200. Convergence with
mesh size was verified by employing coarser and finer
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grids on selected test problems. Typical values of the
time steps ranged from 1073 to 1074, The CPU time
required for convergence was from 180 to 1200s on
an IBM 4381 computer.

In order to verify the convergence of the present
numerical study, some of the cases considered by
Shiralkar et al. [5], for the natural convection in a
vertical, rectangular, porous enclosure subjected to a
horizontal temperature differential, were reproduced.
In general it was found that essentially identical flow
and temperature patterns as well as the average heat
transfer were obtained. For instance, when R = 500
and 4 = 2.25, an overall Nusselt number of 9.998 was
obtained in the present study while that reported by
Shiralkar et al. was 10.073. As an additional check
on the accuracy of the results, an energy balance was
used for the system. For this the heat transfer through
each plane y = constant was evaluated at each
location —1/2 <y < 1/2 and compared with the
input at y = 1/2. For most of the results reported here
the energy balance was satisfied to within 1-2%.

4. LAYER HEATED FROM THE SIDE WALLS

In this section an approximate solution to the
governing equations (2.9) and (2.10) is sought for the
case of a long, shallow cavity heated from the side by
a constant heat flux. For this situation it is assumed
that:

A >» 1 with R constant. 4.1)

The case of a long, shallow, horizontal, porous
layer with the two vertical walls held at fixed but
different temperatures and the horizontal surfaces
maintained adiabatic has been studied in the past
by Walker and Homsy [17]. By using matched
asymptotic expansions it was shown that the flow
inside the cavity may be decomposed into three parts;
a core region of extent O(A4) in the center of the cavity,
and two end regions within an O(1) distance from the
end walls. The solutions in the three regions are
coupled by the matching requirements in the regions
of overlap. Physically, the basic flow consists of a
buoyancy-driven, parallel flow which is moderated
by viscous effects over a length H'. The flow then
turns through 180° in the end regions. This procedure
will be followed in the present investigation in order
to study both the effects of the inclination angle and
the presence of constant heat fluxes imposed on two
opposite walls.

As already discussed in refs. [17-19] for the case
of a thin porous layer (A >» 1) the flow within the core
region of the cavity may be expected to be parallel.
As a result the streamfunction and temperature field

must be respectively of the following form [17]:
T=Cx+ 6y 4.2)

and

¥ =Yy

where C, the temperature gradient along the x direc-
tion, has to be determined from the thermal boundary
conditions imposed on the end regions of the cavity.

Substituting equations (4.2) and (4.3) into equations
(2.9) and (2.10) one obtains respectively:

4.3)

6,,, — a*0, + «a*Ccotd =0 (4.4)

and

Cy,—0,,=0 4.5)

where a? = RCsing.

Integrating equations (4.4) and (4.5) and making
use of equation (4.2) and the boundary conditions
from equation (2.13), one obtains respectively:

T=Cx+ gsinh ay + Cycot¢ (4.6)
and
B
V= E(coshay — cosha/2) 4.7
where
B = (1 — Ccot¢)/cosha/2. 4.8)

The velocity component u is derived from equation
4.7) to be:

_Be

“=7T

sinh ay. 4.9)

The value of the unknown constant C, the axial
temperature gradient, has to be determined from the
thermal boundary conditions imposed on the end
walls. The constant C may be obtained in general by
matching the core solution with solutions valid in the
end regions. In the case of a porous cavity with
isothermal end walls, such a solution has been
developed formally by Walker and Homsy [17] and
a first-order description of the entire flow field,
including the corner interaction regions was obtained.
However it was shown by Bejan and Tien [18] that,
in order to determine the constant C, which defines
the core flow, a detailed analysis of the end regions
is not absolutely necessary. In fact the constant C
may be evaluated simply by matching the core region
with an integral solution for the flow and temperature
field in the end region. In the case of a cavity with
isothermal vertical walls, this was done by selecting
reasonable profiles for the velocity and temperature
distributions inside the end regions. In the present
problem, due to the fact that a constant heat flux is
imposed on the vertical walls, a guess of the velocity
and temperature profiles inside the end regions is not
even required to solve the core region [15]. The
value of the constant C may be obtained simply by
considering the arbitrary control volume of Fig. 1.
Integration of equation (2.10), together with boundary
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conditions (2.12) and (2.13), yields the following equ-

ation:
1/2
J [uT— 6_7:] dy=0
12 0x

at any position x.
Substituting equations (4.6), (4.8) and (4.9) into
(4.10) and integrating yields:

B?(sinha
_a —1
¢ 2C< o )

— Bcot¢ cosh az/2|i2—t%‘£/Z - 1]. 4.11)

(4.10)

The value of the axial temperature gradient C may
be evaluated, for a given Rayleigh number R and
inclination angle ¢ from the above equation.

The Nusselt number predicted by the present analy-
sis is derived by first evaluating the wall-to-wall
dimensionless temperature difference, taken arbi-
trarily at the position x = 0 since the temperature of
each thermally active wall varies linearly in x. Thus

AT = 71).1/2 - 7;).—1/2 = 27;),1/2

= 2BGinh 2 + Coot ¢ 4.12)
o 2
The Nusselt number Nu is given by
(4L _ 1
Nu = (AT) kK T AT
i 4.13)

~ 2Bsinha/2 + Cacotg

where AT is the actual wall-to-wall temperature
difference.

Figure 2 presents the results for Nusselt number
Nu as a function of the angle of inclination ¢ for
Rayleigh numbers of 20, 100 and 500, respectively.
No numerical results are presented for R > 500 since
they did not provide sufficient additional insight into
the problem and also the computing time necessary
to obtain an accurate steady-state solution became
rapidly prohibitive. Also shown in the figure are
results of numerical calculations for cavities with
aspect ratios A = 3, 4 and 5. An excellent agreement
between the analytical and numerical results is
observed in the range of the parameters considered.
The orientation angle ¢ is seen to have a dominant
effect on the Nusselt number for a given Rayleigh
number. As the angle of inclination ¢ approaches 0°,
the Nusselt number tends toward unity, indicating
that the heat transfer is mainly due to conduction.
This is expected since ¢ = 0° corresponds to the case
of a cavity heated from the top which causes no
convection as the density gradient is stable. Most of
the change in the heat transfer occurs in the range
0 < ¢ < /2 where the cavity is heated from the top.
Also, it is noticed that the Nusselt number is a strong

12 T T
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DDl >

ANALYTICAL RESULTS

2

l |
s il
a 2
¢

Fi1G. 2. Effect of inclination angle ¢ on the Nusselt number
Nu.

function of the Rayleigh number. As the inclination
angle ¢ is increased above m/2, the enclosure starts
to be heated from the bottom. The Nusselt number
continues to increase with increasing ¢, passes
through a peak and then begins to decrease. The
effect of heating the cavity from the top 0 < ¢ < x/2
on the Nusselt number is seen to be large in compari-
son with that of heating from the bottom n/2 < ¢ < n.
It is also noticed that the effect of inclination angle on
Nusselt number is more pronounced as the Rayleigh
number is increased. The peak in Nusselt number
occurs at about 125° for R = 500 but it is at about
135° for R = 20. Therefore, the peak in Nusselt
number takes place at a lower inclination angle when
Rayleigh number is increased. A similar trend has
been reported in the case of inclined fluid cavities
containing two opposite isothermal surfaces main-
tained at different temperatures [20-22].

The maximum value of the streamfunction ¥,,,, and
the velocity profiles at a position x = 0 as a function
of the inclination angle ¢ and Rayleigh number R are
presented in Figs. 3 and 4, respectively. The curves
illustrate the fact that the convection becomes more
and more vigorous as the orientation angle of the
cavity is increased. It is observed from Fig. 3 that the
curves for ¥, reach a maximum value when the
cavity is heated from the bottom. However, contrary
to the results obtained for the Nusselt number, the
peak in the maximum streamfunction shifts towards
¢ = n as the Rayleigh number is increased. A similar
trend has been reported in the past by Robillard et
al. [23] while considering the natural convection heat
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Fi1G. 3. Effect of inclination angle ¢ on the maximum value
of streamfunction ¥ ,,,.

transfer within an annular porous layer having its
inner boundary isothermal and its outer boundary
subjected to a thermal stratification arbitrarily ori-
ented with respect to the gravity. From Fig. 4 it is
seen that the velocity is maximum at a position
¢ =~ 3n/4 which corresponds, as discussed previously,
with the maximum in the heat transfer rate. In both
Figs. 3 and 4 the numerical results are seen to be in
excellent agreement with the analytical solution.

As mentioned before, Bories and Combarnous [8]

have reported an experimental study of thermal
convection in a three-dimensional, tilted, porous box
bounded by two parallel, impermeable planes main-
tained at different temperatures. Several types of flow
were observed: a unicellular two-dimensional motion
and a juxtaposition of longitudinal coils or polyhedral
cells. In particular, three-dimensional hexagonal cells
were observed for tilt angles smaller than 15°. Caltagi-
rone and Bories [13] have demonstrated that the
above experimentally observed structure can be pre-
dicted by a three-dimensional numerical model. For
the present case of an inclined layer heated by a
constant heat flux, no experimental or three-dimen-
sional results have been reported in the literature.
Nevertheless, the rich variety of flow patterns
described above can reasonably be also expected to
occur. The analytical and numerical results presented
here on the basis of a parallel flow are expected to
closely predict the appearance of the two-dimensional
flow regime but are obviously unable to predict the
three-dimensional patterns.

4.1. The vertical layer heated from the side

The case of a vertical layer heated from the side
with a constant heat flux is of practical interest.
For this particular position ¢ = /2, «> = RC and
equations (4.6)—(4.8), (4.10) and (4.12) reduce to

_ sinh ay _x
T=Cx+ 2cosh o3’ Nu = 2coth a/2 (4.14)
_ R| coshay __ R sinhay
V= az[cosh 2/2 1]’ " o cosha/2 @15
R | sinha — «
C=—|———21 4.16
20° ,:cosh2 a/2] “.16)

The boundary layer regime inside a vertical porous
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FIG. 4. Effect of inclination angle ¢ on velocity profiles at x = 0 for A = 4 and R = 100.
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cavity with uniform heat flux from the side has been
studied recently by Bejan [15]. The boundary-layer
equations were solved by simplifying the convective
transport terms in the energy equation in a way
analogous to that accomplished by the method of
Osecn linearization in the analysis of low Reynolds
number flows. The resulting velocity and temperature
fields in the vicinity of the vertical walls was found

to be exponentially varying. It was also demonstrated

that the vertical boundary-layer thickness is constant
with altitude and the core region inside the cavity is
motionless and linearly stratified. It is interesting to
note that Bejan’s solution may be recovered as a limit
case of the present study. Hence when R » 1, it
may be easily shown that o ~ R¥%, C ~ R™'/% and
equations (4.6)—(4.9) and (4.13) reduce to:

7= 4 le-w 4.17)

Je ®
Y= e  u=a¥2e?  (418)
Nu =§ (4.19)

where y =y — 1/2.

The above equations are the same as those obtained
by Bejan [15] when translated into corresponding
notations. It is worthwhile to mention that the equa-
tions presented by Bejan in his paper are written
explicitly in terms of the aspect ratio A of the cavity.
However, as demonstrated by equations (4.17)-(4.19),
the aspect ratio is not a parameter in this type of
problem and in fact may be eliminated from Bejan’s
results by a simple renormalization of his equations.

Figure 5 shows the effect of Rayleigh number R on
Nusselt number Nu for inclination angle ¢ = n/2
and aspect ratio 2 < A < 10. The present analytical
solution, equation (4.14), is compared with the numeri-
cal results of Bejan [15] and those obtained in this
study. Figure 5 also shows the Nusselt number
predicted for the boundary-layer flow regime, equ-
ation (4.19). In the case of a slow motion, R « 1, it
may be shown from equations (4.14) and {4.16) that
the Nusselt number predicted by the present theory
is given by Nu~ 1 + R?*/144. Tt is seen from Fig. 5
that all results are in good agreement. It is also
noticed that the boundary-layer solution, equation
(4.19), predicts accurately the Nusselt number for
Rayleigh numbers higher than approximately R = 25.
Finally it must be mentioned that, contradictory to
the case of a porous cavity whose vertical walls are
isothermally maintained [24], the numerical results
obtained in the present study, for a cavity heated by
constant heat fluxes, show no dependence on the
aspect ratio when A4 > 2. This point is illustrated in
Fig. S where the numerical results, obtained for 4 = 3,
4, 5 and 10, are seen to be in good agreement with
the aspect ratio independent correlation predicted by
equation (4.19). However, as discussed by Bejan [15]
and Prasad and Kulacki [24] the structure of the
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flow and temperature patterns resulting from these
two types of boundary conditions are considerably
different.

4.2, The horizontal layer heated from the bottom

It is of interest to examine the case of a horizontal
layer heated from the bottom with a constant heat
flux. For this situation ¢ = n and a — 0, and it may
Lo Lo sl sl Jdoeer o ad dasimmamndiana Raldo aea
DE SIIOWII LNdl e NOow ailg u::ulpcrauuc uvIuR alv

given by:

RC*{y* 1
T=Cx+ y[l + —‘*2"“‘(? — Z)] {4.20)
_RC(, 1) -
V== (y 4), u=RCy 4.21)
C= t—}? /IR —12), orC=0 (422
Nu=1/(1/6 + 10/R), orNu=1 (423)

From equation (4.22) it is seen that for Ra < 12 the
present analysis predicts that no motion may be
induced inside the cavity. It is interesting to mention
that the onset of convection, induced by buoyancy
effects resulting from vertical thermal gradients, in a
horizontal layer of a saturated porous medium, has
been studied in the past by Nield [25]. Using a linear
perturbation analysis the critical Rayleigh numbers
for the onset of convection were obtained for various
thermal boundary conditions imposed on the bound-
aries of the horizontal layer. For the case of the
boundary conditions considered in the present study,
i.e. rigid horizontal walls heated from the bottom and
cooled from the top by a constant heat flux, a critical
Rayleigh number of R = 12 was predicted for the
onset of convection. This result is in agreement with
the prediction of equation (4.22). Numerical tests,
performed for a cavity with aspect ratio 4 = 4, have
also shown that for R < 12 no convective motion
may be induced inside the cavity. For valuesof R > 12
the flow inside the cavity was found to depend upon
the Rayleigh number and the initial conditions used
to initiate the flow. For instance the numerical results
presented in Fig,. 6(a) for the case R = 50, A = 4 and
¢ = 180° were obtained by using as initial conditions
the steady-state solution indicating a unicellular flow
regime obtained previously with the same parameters
but at an inclination angle ¢ = 175°. A steady-
state unicellular flow was obtained and the resulting
velocity profile depicted in Fig. 4 is seen to be in
excellent agreement with that predicted by the present
theory. However, this type of flow does not seem to
have been observed experimentally in the past. On
the other hand when pure conduction temperature
profiles with no motion were used as initial conditions
it was found that a steady-state multicellular flow
pattern (Fig. 6(b)) was induced by the roundoff errors
generated in the numerical computations. Also it
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F1G. 5. Effect of Rayleigh number R on the Nusselt number Nu for a vertical cavity (¢ = n/2) heated from
the side.

should be mentioned that, for very high values of the
Rayleigh number, no steady unicellular flow could be
maintained inside the cavity independently of the
initial conditions used to start the flow. In fact, when
the angle of inclination is approaching 180°, the flow
might not be two-dimensional as assumed in the
theoretical and numerical solutions. For instance,
experimental observations and three-dimensional
numerical simulations have shown that, in the case
of a tilted, porous, rectangular cavity, the flow remains
two-dimensional for 0 < ¢ < 173° but for ¢ > 173°,
oblique rolls were obtained [8]. The multicellular
flow pattern depicted in Fig. 6b is similar to the
classical Bénard cells observed in a confined porous
medium heated from below at a constant temperature.
For this situation it was found by Lapwood that the
critical Rayleigh number at which the heat transport
process changes from purely conductive to convective
transfer was R = 4n2, i.e. approximately three times
higher than the value R = 12 reported by Nield [25]
for the present situation. It is also observed in Fig.
6(b) that, due to the thermal boundary conditions
considered in this study, the temperature on the
horizontal planes is not uniform but rather varies
periodically from a maximum to a minimum value.

Figure 7 shows a comparison between the theoreti-
cal Nusselt number predicted by equation (4.23) and
numerical results obtained for cavities with aspect
ratios 4 = 2, 3 and 4. In all the numerical resuits
presented in Fig. 7 the flow inside the cavity was
steady and unicellular.

5. LAYER HEATED FROM THE END WALLS

In this section we consider the case where a constant
heat flux is imposed on the end walls of the porous
layer while its side walls are maintained adiabatic. To
this end, the constant heat flux imposed on the side
walls in Fig. 1 is replaced by adiabatic conditions and
the end walls are now subjected to a constant heat

flux. For this situation the flow and temperature fields
are described by equations (2.9) and (2.10) subjected
to the following boundary conditions:

oT
¥=0 F-=1 onx=zx42 ()
¥ =0 %—z=o ony=+1/2. (52

Proceeding as in Section 4 it may be shown that
the solution for the temperature field, streamfunction
and velocity profiles are given by equations (4.6), (4.7)
and (4.9) respectively where the constant B is now

given, for the present situation, by
B = —Ccot¢/cosha/2. (5.3)

Integrating the energy equation (2.10) over the
control volume of Fig. 1 and making use of the
boundary conditions (5.1) and (5.2) one obtains:

1/2
j (uT—a—T)dy= -1
“12 ax

Substituting equations (4.6), (4.9), (5.3) into (5.4)
and integrating yields:

(5.4)

Ce1- Bcot¢ [(sinha —a)

o 2cosh a/2

+ (2sinh /2 — acosh a/Z)]. (5.5)

Figure 8 presents the maximum value of the stream-
function ¥, as a function of the inclination angle ¢
for Rayleigh numbers R of 20, 50 and 100 as predicted
by equations (4.7), (5.3) and (5.5). Also shown in Fig.
8 are results of numerical calculations for cavities
with aspect ratios 4 =3, 4 and 5. The effect of
inclination angle ¢ on temperature profiles at x = 0
for A=4 and R = 100 is illustrated in Fig. 9. A
good agreement between the analytical and numerical
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FIG. 6. Streamlines and isotherms for a horizontal layer heated from the bottom (¢ = n) for 4 =4 and

R = 50.
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FiG. 7. Effect of Rayleigh number R on the Nusselt number Nu for a horizontal cavity (¢ = n) heated
from the bottom.

results is observed. It must be mentioned at this stage

that the Nusselt number Nu predicted by the present 100 J

theory, for the case of a layer heated from the end A

walls, was not found to be in good agreement with s ol g 3 gggﬂUELRT'SCAL -

the results of the numerical solution, especially when - g

the Rayleigh numbers are large. This is due to the

fact that the Nusselt number, defined by equation 6.0 ——ANALYTICAL 7
. RESULTS

(4.13), is based on the knowledge of the averaged 4 fAX R =100

temperature difference between the two heated walls. a0k —

However the theoretical temperature distribution R =50

given by equations (4.6), (5.3) and (5.5) is valid only '

in the core region of the cavity and becomes a very 2.01- R =20

poor approximation in the end regions near the f

heated walls. Hence a good agreement between the 00 .

theoretical and the numerical Nusselt numbers cannot K 0 .

be expected. 2 2

For the case of a horizontal layer heated from the qb

side ¢ = 0 and « — 0, it may be shown from equations

(4.6), (4.7), (4.9), (5.3) and (5.5) that the temperature  gi g Effect of inclination angle ¢ on the maximum value
and flow fields are described by of streamfunction ¥/ ,,.
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¥ = —-2—<y - Z)Jt = —RCy (5.7)
where the value of C is given by
C3R?* 4+ 120C — 120 = 0. (5.8)

This problem has been studied recently by Vasseur
et al. [19] for a wide range of Rayleigh numbers
107! £ R < 10* and aspect ratios 10 < 4 < 3. It was
demonstrated that the above analytical solution was
in good agreement with a numerical solution of the
full governing equations (2.9)-(2.13) provided that
both the Rayleigh number and the inverse of the
aspect ratio be relatively not too large. For instance,
when 4 = 4, the flow was demonstrated to remain
parallel for R < 625. As the aspect ratio of the cavity
is increased, the maximum Rayleigh number for which
the flow maintains its parallel character also increases.
Also, the existence of multicellular flows similar to
those observed numerically by Prasad and Kulacki
[24] and experimentally by Ostrach et al. {27] in
their study of natural convection in shallow cavities
bounded by isothermal vertical walls, has been dis-
cussed in ref. [19]. It was found in particular that,
relative to the case where the temperature is specified
along the side walls, the imposition of temperature
derivative (q) has a stabilizing effect on the flow
structure. As a result, with the present boundary
conditions, the flow structure becomes multicellular
for Rayleigh numbers approximately three orders of
magnitude higher than the values reported by ref.
{24] for shallow cavities isothermally heated from the
side.

It is also of interest to consider the case of a vertical,
porous layer heated from the bottom with a constant
heat flux. For this situation ¢ = —n/2 and «? = RC,
and it may be shown that:

2

=2 x + Dsinny (59)
R
¥ = —,cosmy; u = —DRsinny  (5.10)
where the value of D is given by
D= +. /2R — n?)/R, orD=0. (5.11)

From equation (5.11) it is predicted that a convec-
tive motion inside the cavity may be generated only
for R > n®. This critical Rayleigh number for the
onset of convection has been verified numerically and
it was found that, for R < n?, the fluid was indeed
motionless and thermally stratified. However, as illus-
trated in Fig. 10, for R > n?, a flow field is induced
inside the cavity resulting in a single cell circulating
clockwise or counterclockwise depending on the
roundoff errors generated in the numerical compu-
tations.

Figure 11 presents a comparison between the theor-
etical sinusoidal velocity profiles predicted by equ-
ation (5.10) at the position x = 0 and the numerical
results for R = 20, 50 and 100 and A =4. A good
agreement between both results is observed.

6. CONCLUSIONS

The problem of natural convection in a two-
dimensional, inclined porous layer with uniform heat
flux from two opposite walls while the other walls are
insulated has been studied both numerically and
theoretically. An approximate analytical solution was
obtained by assuming the natural convection pattern
to consist of a core region situated in the middle of
the porous layer in addition to the two end regions.
When the aspect ratio of the cavity is large (4 » 1)
the streamlines in the core region are essentially
parallel to the boundaries of the cavity. The main
conclusions of the present analysis are:
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FI1G. 10. Streamlines and isotherms for a vertical layer heated
from the bottom (¢ = —n/2) for A = 4 and R = 100.
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FiG. 11. Effect of Rayleigh number R on velocity profiles at
x = 0O for a vertical layer heated from the bottom (¢ = —n/2).

6.1. Cavity heated from the long side walls

(i) The orientation of the cavity has, for a given
Rayleigh number, a large effect on the heat transfer
rate. The maximum heat transfer occurs when the
enclosure is heated from the bottom
90° < ¢ < 180°. As the Rayleigh number
increases the angle at which maximum energy
transfer takes place shifts towards lower values
of ¢.

(ii) In the case of a vertical layer heated from the
side (¢ = 90°) the temperature and velocity fields
predicted by the present study for boundary-layer
regime (R >» 1) are in agreement with Bejan’s
solution [15] obtained by solving the boundary-
layer equations by a linearization technique.

(iii) In the case of a horizontal layer heated from the
bottom (¢ = =) the present theory indicates that
no flow can be initiated when R < 12. A similar
result has been predicted in the past by Nield
[25] on the basis of a stability analysis. For
R > 12 both unicellular and multicellular flows

may be observed in the cavity, depending on
the Rayleigh number, aspect ratio and initial
conditions used to initiate the flow.

6.2. Cavity heated from the short end walls

(i) The effect of the orientation angle on the flow
field was found to be similar to that observed for
the cavity heated from the long side walls.

(i) In the case of a vertical layer heated from the
bottom (¢ = —n/2) the present theory predicts
a motionless fluid when R < z% This critical
Rayleigh number for the onset of convection has
been confirmed by numerical simulations.

The main features of the approximate theoretical
solution have been tested by a numerical solution of
the full governing equations in the range 20 < R < 50,
2 < A< 10and 0 < ¢ < = for the cavity heated from
the long side walls and —n/2 < ¢ < =/2 for the cavity
heated from the short end walls. Finally, it should be
noted that the scope of this study is limited by the
assumption of two-dimensional steady laminar flow,
i.e. nothing can be inferred about the possible develop-
ment of various types of instabilities that could lead
to an unsteady and/or three-dimensional flow within
the range of Rayleigh numbers and inclination angles
considered in the present study.
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CONVECTION NATURELLE DANS UNE COUCHE POREUSE, MINCE, INCLINEE,
EXPOSEE A UN FLUX DE CHALEUR CONSTANT

Résumé—On étudie analytiquement et numériquement une cavité rectangulaire mince, inclinée, remplie
par un milieu poreux saturée de fluide. Un flux thermique constant est appliqué pour chauffer et refroidir
les deux parois opposées de la couche, tandis que les autres parois sont isolées. Sur la base des équations
de Darcy-Oberbeck-Boussinesq, le probléme est résolu analytiquement, dans la couche mince, en utilisant
un développement asymptotique, et une forme intégrale de I'équation d’énergie. Des solutions pour les
deux champs, distributions de température et nombres de Nusselt sont obtenus explicitement en fonction
du nombre de Rayleigh et de I'angle d'inclinaison de la cavité. Une étude numérique du méme phénoméne
est conduite en résolvant le systéme complet des équations de base. Un bon accord est trouvé entre les
calculs analytiques et la simulation numérique.

NATURLICHE KONVEKTION IN EINER DUNNEN. GENEIGTEN, POROSEN SCHICHT
BEI KONSTANTER WARMESTROMDICHTE

Zusammenfassung—Die natiirliche Konvektion in einem diinnen, rechteckigen und geneigten Hohlraum,
der mit einer tberfluteten Schiittung gefiillt ist, wird analytisch und numerisch untersucht. Die beiden
gegeniiberliegenden Wiinde werden mit konstanter Wirmestromdichte geheizt bzw. gekiihlt, wihrend
die beiden anderen Winde wirmegedimmt sind. Auf der Grundlage der Darcy-Oberbeck~Boussinesq
Gleichungen wird das Problem fiir eine diinne Schicht analytisch mit Hilfe der asymptotischen Ndherung
und einer Integralform der Energiegleichung geldst. Losungen fiir die Stromlinienfelder, Tem-
peraturverteilungen und Nusselt-Zahlen werden explizit als Funktion der Rayleigh-Zahl und des Nei-
gungswinkels ermittelt. Eine numerische Untersuchung desselben Phinomens, der eine vollstindige Losung
der beschreibenden Gleichungen zugrundeliegt, wurde ebenfalls durchgefiihrt. Gute Ubereinstimmung
zwischen analytischen und numerischen Ergebnissen wurde erreicht.
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ECTECTBEHHAS KOHBEKIIMA B TOHKOM HAKJIOHHOM NOPUCTOM CJIOE IPH
NIOCTOSIHHOM TEIUIOBOM ITOTOKE

ABHOTIHA—AHINHTHYECKH ¥ YHCIACHHO MCCIEAYETCS BBI3BAHHOE Da3HOCTHIO TEMIEPATYD TEYCHHME B
HAKJIOHHOM OPAMOYTOJIbHOM MOJOCTH HeOOJNBIIONH BBICOTHI, 3aMOJHEHHOH HACKIUEHHBIM XHAKOCTHIO
NopucTHIM MaTeprasioM. OIHa U3 ABYX NPOTHBOMOJOXKHBIX CTEHOK MOJIOCTH HArPEBAETCH, 4 BTOpas—
OXJIAXKIAETCH MOCTOSHHLIM TEIUIOBBIM MOTOKOM, B TO BpPEMSs KAK [BE APYTHE CTEHKH TEIJIOM30JIHpO-
pausl. U3 ypasuenmii Japch-OO6epGeka-ByccHHECKa MOJIyY€HO AHAJHTHYECKOE DEIlIeHHe 3alayy B
npuOMIDKEHRM TOHKOTCG CJIOS C HCHOJbL3OBAHHEM aCHMATOTHYCCKHX DA3NOXKCHUH H MHTErpajbHOM
GopMbl ypaBHeHHa Juepruu. Peilenus g ponelf TeueHHs, pacnpelesicHHH TEMIEPATyp H Pa3IHYHBIX
3Hawennit uncna HyccensTa aaHbl B SBHOM BHIAE B 3aBHCHMOCTH OT uucia Panes M yria HaxioHa
nosocTn. [Iposeneno Takke HccaeZOBaHHE JTOH Xe 3a[a4# HA OCHOBC HHCJCHHOTO DEIICHHS MOJHON
CHCTEMBI OCHOBHBIX ypasHeHuit. TTosyyeHo Xopolllee COOTBETCTBHE MEXIY PE3ybTaTAMH aHATMTHYEC-
KHX PACYETOB K MHCICHHOIO MOJETNPOBAHMUA.
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